27,503 research outputs found

    Freely-Decaying, Homogeneous Turbulence Generated by Multi-scale Grids

    Full text link
    We investigate wind tunnel turbulence generated by both conventional and multi-scale grids. Measurements were made in a tunnel which has a large test-section, so that possible side wall effects are very small and the length assures that the turbulence has time to settle down to a homogeneous shear-free state. The conventional and multi-scale grids were all designed to produce turbulence with the same integral scale, so that a direct comparison could be made between the different flows. Our primary finding is that the behavior of the turbulence behind our multi-scale grids is virtually identical to that behind the equivalent conventional grid. In particular, all flows exhibit a power-law decay of energy, u2tnu^2 \sim t^{-n}, where nn is very close to the classical Saffman exponent of n=6/5n = 6/5. Moreover, all spectra exhibit classical Kolmogorov scaling, with the spectra collapsing on the integral scales at small kk, and on the Kolmogorov micro-scales at large kk. Our results are at odds with some other experiments performed on similar multi-scale grids, where significantly higher energy decay exponents and turbulence levels have been reported.Comment: 19 pages, 18 figure

    Self-adjoint boundary-value problems on time-scales

    Get PDF
    In this paper we consider a second order, Sturm-Liouville-type boundary-value operator of the form Lu:=[puabla]Delta+qu, L u := -[p u^{ abla}]^{Delta} + qu, on an arbitrary, bounded time-scale mathbbTmathbb{T}, for suitable functions p,qp,q, together with suitable boundary conditions. We show that, with a suitable choice of domain, this operator can be formulated in the Hilbert space L2(mathbbTkappa)L^2(mathbb{T}_kappa), in such a way that the resulting operator is self-adjoint, with compact resolvent (here, "self-adjoint" means in the standard functional analytic meaning of this term). Previous discussions of operators of this, and similar, form have described them as self-adjoint, but have not demonstrated self-adjointness in the standard functional analytic sense

    Constraints on scalar diffusion anomaly in three-dimensional flows having bounded velocity gradients

    Full text link
    This study is concerned with the decay behaviour of a passive scalar θ\theta in three-dimensional flows having bounded velocity gradients. Given an initially smooth scalar distribution, the decay rate d/dtd/dt of the scalar variance is found to be bounded in terms of controlled physical parameters. Furthermore, in the zero diffusivity limit, κ0\kappa\to0, this rate vanishes as κα0\kappa^{\alpha_0} if there exists an α0(0,1]\alpha_0\in(0,1] independent of κ\kappa such that <<\infty for αα0\alpha\le\alpha_0. This condition is satisfied if in the limit κ0\kappa\to0, the variance spectrum Θ(k)\Theta(k) remains steeper than k1k^{-1} for large wave numbers kk. When no such positive α0\alpha_0 exists, the scalar field may be said to become virtually singular. A plausible scenario consistent with Batchelor's theory is that Θ(k)\Theta(k) becomes increasingly shallower for smaller κ\kappa, approaching the Batchelor scaling k1k^{-1} in the limit κ0\kappa\to0. For this classical case, the decay rate also vanishes, albeit more slowly -- like (lnPr)1(\ln P_r)^{-1}, where PrP_r is the Prandtl or Schmidt number. Hence, diffusion anomaly is ruled out for a broad range of scalar distribution, including power-law spectra no shallower than k1k^{-1}. The implication is that in order to have a κ\kappa-independent and non-vanishing decay rate, the variance at small scales must necessarily be greater than that allowed by the Batchelor spectrum. These results are discussed in the light of existing literature on the asymptotic exponential decay eγt\sim e^{-\gamma t}, where γ>0\gamma>0 is independent of κ\kappa.Comment: 6-7 journal pages, no figures. accepted for publication by Phys. Fluid

    A Basis for Interactive Schema Merging

    Get PDF
    We present a technique for merging the schemas of heterogeneous databases that generalizes to several different data models, and show how it can be used in an interactive program that merges Entity-Relationship diagrams. Given a collection of schemas to be merged, the user asserts the correspondence between entities and relationships in the various schemas by defining &quot;isa&quot; relations between them. These assertions are then considered to be elementary schemas, and are combined with the elementary schemas in the merge. Since the method defines the merge to be the join in an information ordering on schemas, it is a commutative and associative operation, which means that the merge is defined independent of the order in which schemas are presented. We briefly describe a prototype interactive schema merging tool that has been built on these principles. Keywords: schemas, merging, semantic data models, entity-relationship data models, inheritance 1 Introduction Schema merging is the proble..

    Implications of a new light gauge boson for neutrino physics

    Full text link
    We study the impact of light gauge bosons on neutrino physics. We show that they can explain the NuTeV anomaly and also escape the constraints from neutrino experiments if they are very weakly coupled and have a mass of a few GeV. Lighter gauge bosons with stronger couplings could explain both the NuTeV anomaly and the positive anomalous magnetic moment of the muon. However, in the simple model we consider in this paper (say a purely vectorial extra U(1) current), they appear to be in conflict with the precise measurements of \nu-e elastic scattering cross sections. The surprising agreement that we obtain between our naive model and the NuTeV anomaly for a Z' mass of a few GeV may be a coincidence. However, we think it is interesting enough to deserve attention and perhaps a more careful analysis, especially since a new light gauge boson is a very important ingredient for the Light Dark Matter scenario.Comment: 9 page

    Dirac Quantization of the Pais-Uhlenbeck Fourth Order Oscillator

    Full text link
    As a model, the Pais-Uhlenbeck fourth order oscillator with equation of motion d4q/dt4+(ω12+ω22)d2q/dt2+ω12ω22q=0d^4q/dt^4+(\omega_1^2+\omega_2^2)d^2q/dt^2 +\omega_1^2\omega_2^2 q=0 is a quantum-mechanical prototype of a field theory containing both second and fourth order derivative terms. With its dynamical degrees of freedom obeying constraints due to the presence of higher order time derivatives, the model cannot be quantized canonically. We thus quantize it using the method of Dirac constraints to construct the correct quantum-mechanical Hamiltonian for the system, and find that the Hamiltonian diagonalizes in the positive and negative norm states that are characteristic of higher derivative field theories. However, we also find that the oscillator commutation relations become singular in the ω1ω2\omega_1 \to \omega_2 limit, a limit which corresponds to a prototype of a pure fourth order theory. Thus the particle content of the ω1=ω2\omega_1 =\omega_2 theory cannot be inferred from that of the ω1ω2\omega_1 \neq \omega_2 theory; and in fact in the ω1ω2\omega_1 \to \omega_2 limit we find that all of the ω1ω2\omega_1 \neq \omega_2 negative norm states move off shell, with the spectrum of asymptotic in and out states of the equal frequency theory being found to be completely devoid of states with either negative energy or negative norm. As a byproduct of our work we find a Pais-Uhlenbeck analog of the zero energy theorem of Boulware, Horowitz and Strominger, and show how in the equal frequency Pais-Uhlenbeck theory the theorem can be transformed into a positive energy theorem instead.Comment: RevTeX4, 20 pages. Final version, to appear in Phys. Rev.

    Feasibility model of a high reliability five-year tape transport. Volume 3: Appendices

    Get PDF
    Detailed drawings of the five year tape transport are presented. Analytical tools used in the various analyses are described. These analyses include: tape guidance, tape stress over crowned rollers, tape pack stress program, response (computer) program, and control system electronics description

    Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach

    Full text link
    For years, astrophysicists, plasma fusion and fluid physicists have puzzled over Rayleigh-Taylor turbulent mixing layers. In particular, strong discrepancies in the growth rates have been observed between experiments and numerical simulations. Although two phenomenological mechanisms (mode-coupling and mode-competition) have brought some insight on these differences, convincing theoretical arguments are missing to explain the observed values. In this paper, we provide an analytical expression of the growth rate compatible with both mechanisms and is valide for a self-similar, low Atwood Rayleigh-Taylor turbulent mixing subjected to a constant or time-varying acceleration. The key step in this work is the introduction of {\it foliated} averages and {\it foliated} turbulent spectra highlighted in our three dimensional numerical simulations. We show that the exact value of the Rayleigh-Taylor growth rate not only depends upon the acceleration history but is also bound to the power-law exponent of the {\it foliated} spectra at large scales
    corecore